AC axiale compacte ventilator-W2E142-BB01-01
Even voorstellen
Uitgerust met een krachtige 230VAC-motor, produceert de EBM AC Axial Compact Fan een luchtstroomcapaciteit van 230CFM, waardoor de interne temperatuur van uw apparaat optimaal blijft, zelfs tijdens de meest veeleisende werkzaamheden. Met een energieverbruik van slechts 28 W maximaliseert deze ventilator de energie-efficiëntie terwijl hij toch uitstekende prestaties levert, waardoor hij ideaal is voor bedrijven die de energiekosten willen verlagen.
De EBM AC Axial Compact Fan - W2E142-BB01-01 is voorzien van een ingebouwd kogellager en is ontworpen voor duurzaamheid en langdurig gebruik. Het kogellagerontwerp zorgt ervoor dat de ventilator soepel draait, minimale trillingen genereert en een laag geluidsniveau van 57 dBA produceert. Deze functie zorgt voor een rustige werkomgeving, waarbij mogelijke afleiding of verstoringen worden geëlimineerd, waardoor een optimale werkproductiviteit behouden blijft.
Met een maximaal toerental van 3300 RPM genereert deze krachtige ventilator een efficiënte luchtstroom, zelfs in de meest uitdagende toepassingen. De luchtstroom met hoge snelheid zorgt ervoor dat de ventilator de lucht effectief circuleert, waardoor de koel- en verwarmingssystemen van uw apparaat optimaal kunnen functioneren. De EBM AC Axial Compact Fan is een oplossing die garandeert dat uw apparaat beschermd is tegen oververhitting.
Samenvattend is de EBM AC Axial Compact Fan een ideaal product voor compacte apparaten die een efficiënt koelsysteem vereisen. Met kenmerken zoals een krachtige motor, ingebouwde kogellagers en een krachtig ontwerp levert deze ventilator gegarandeerd uitstekende prestaties en betrouwbaarheid. Het lage energieverbruik zorgt voor energie-efficiëntie, terwijl de snelheid van 3300 RPM zorgt voor een maximale luchtstroomcapaciteit. Bestel nu en garandeer optimale temperaturen voor uw apparaat, terwijl u geniet van een rustige en flexibele werkomgeving. Bedankt en geniet van uw aankoop!
Gebruiksaanwijzing
Wat is de maximale spanning die je op een ventilator kunt zetten?
De maximale spanning die op een ventilatormotor kan worden toegepast, varieert van model tot model, maar ligt doorgaans 5%-10% boven de vermelde nominale spanning. Raadpleeg de fabriek om de maximale spanning voor een bepaald onderdeelnummer te bepalen en om meer te weten te komen over de negatieve effecten die hoge spanningen op de motor kunnen hebben
Wat is het spanningsbereik van een ventilator?
Ebmpapst EC-ventilatoren kunnen even goed presteren over een reeks ingangsspanningen. Deze ventilatoren hebben de maximale en minimaal aanvaardbare spanningen die op het label staan vermeld, zoals hieronder:
Houd er rekening mee dat om het gewenste prestatiepunt te bereiken, de ventilator mogelijk extra stroom moet trekken bij lage spanningen.
Kunnen alle 60 Hz ventilatormotoren werken op een frequentie van 50 Hz?
Niet alle ebmpapst-ventilatoren zijn ontworpen om zowel op 50 als op 60 Hz te werken. Als een ventilator zowel 50 Hz- als 60 Hz-voedingen kan accepteren, staat er een "50/60 Hz"-markering op het label, zoals hieronder:
Raadpleeg de fabriek als u van plan bent een voeding te gebruiken met een frequentie die niet overeenkomt met de aanbevolen frequentie van uw ventilator.
Bij het bepalen van de ventilatorprestaties worden verschillende factoren in overweging genomen. Deze factoren omvatten voornamelijk: luchtstroom, statische druk, werkpunten, toerental, vermogen en stroom, en geluidsprestaties. Van deze factoren presenteert ebmpapst een prestatiecurve bij onze producten om een snel overzicht van de prestaties te bieden. Prestatiecurven gebruiken slechts drie van de bovengenoemde factoren: luchtstroom, statische druk en bedrijfspunten.
Wat is luchtstroom?
Voor de luchtverplaatsingsindustrie is het belangrijk om te weten hoe snel een bepaalde hoeveelheid lucht van de ene locatie naar de andere wordt verplaatst, of, eenvoudiger gezegd,hoe veellucht wordt verplaatst in een bepaalde hoeveelheidtijd.
Ebmpapst drukt de luchtstroom doorgaans uit in kubieke voet per minuut (CFM) of kubieke meter per uur (m3/u).
Wat is statische druk?
Opnieuw wordt de luchtverplaatsingsindustrie geconfronteerd met een andere uitdaging: de weerstand tegen stroming. Statische druk, ook wel tegendruk of systeemweerstand genoemd, is een voortdurende kracht op de lucht (of het gas) als gevolg van de weerstand tegen stroming. Deze weerstanden tegen stroming kunnen afkomstig zijn van bronnen zoals statische lucht, turbulentie en impedanties binnen het systeem, zoals filters of roosters. Een hogere statische druk zal een lagere luchtstroom veroorzaken, net zoals een kleinere buis de hoeveelheid water vermindert die er doorheen kan stromen.
Ebmpapst drukt de statische druk doorgaans uit in inches watermeter (in. WG) of Pascal (Pa).
Wat is het systeembedrijfspunt?
Voor elke ventilator kunnen we bepalen hoeveel lucht hij in een bepaalde tijd kan verplaatsen (luchtstroom) en hoeveel statische druk hij kan overwinnen. Voor elk bepaald systeem kunnen we de hoeveelheid statische druk bepalen die het bij een bepaalde luchtstroom zal creëren.
Door deze bekende waarden voor luchtstroom en statische druk te nemen, kunnen we ze in een tweedimensionale grafiek uitzetten. Het bedrijfspunt is het punt waarop de prestatiecurve van de ventilator en de systeemweerstandscurve elkaar kruisen. In reële termen is dit de hoeveelheid luchtstroom die een bepaalde ventilator door een bepaald systeem kan bewegen.
Hoe lees ik een luchtprestatiecurve af?
Om te helpen bij de selectie van ventilatoren, levert ebmpapst bij zijn producten een luchtprestatiegrafiek. De luchtprestatiegrafiek bestaat uit een reeks curven die de luchtstroom tegen statische druk in kaart brengen.
Volg het onderstaande schema. De x-as is voor de luchtstroom, terwijl de y-as voor de statische druk is. De blauwe lijn 'A' illustreert de prestaties van de ventilator buiten een systeem. Om het werkpunt 900CFM @ 2 in.wg te vinden, volgt u de x-as tot 900 en volgt u vervolgens de y-as tot 2 (punt 'B'). Omdat dit werkpunt 'B' onder de prestatiecurve ligt, is dit een punt dat de ventilator kan bereiken.
Lijnen 'C', 'D' en 'E' zijn voorbeelden van systeemweerstandscurven: naarmate de luchtstroom toeneemt, neemt ook de statische druk (of weerstand tegen de luchtstroom) toe, waardoor het moeilijker wordt om lucht te verplaatsen. Normaal gesproken is elk punt tussen de hoogste en laagste van onze voorbeeldweerstandscurven het ideale werkbereik voor de ventilator om zijn hoogste efficiëntie te bereiken. Sommige prestatiegrafieken hebben meerdere luchtstroomcurven; dit zou erop duiden dat de ventilator meerdere snelheden kan hanteren om bedrijfspunten onder de maximale snelheid aan te passen, waardoor energie wordt bespaard.
Voorwaarts gebogen waaiers
- Er zijn twee typen voorwaarts gebogen waaiers: dubbele en enkele inlaat.
- Wordt voornamelijk gebruikt in toepassingen met middelmatige druk en hoog debiet.
- Mogelijke markttoepassingen: ventilatie, koeling etc.
Achterwaarts gebogen waaiers
- Wordt voornamelijk gebruikt in toepassingen met hoge druk en hoog debiet.
- Mogelijke markttoepassingen: datacenter, algemene ventilatie, landbouw; vervoer enz.
Axiale ventilatoren
- Wordt voornamelijk gebruikt in toepassingen met lage druk en hoog debiet.
- Mogelijke markttoepassingen: LED, ventilatie, landbouw; vervoer, enz.